Behavioral Genetics

M. Fernanda Ceriani - Fundación Instituto Leloir


Behavioral Genetics

The circadian clock sets the timing for gene expression, cell metabolism, physiology and behavior to the most critical moments in the day, thus contributing to the organism’s adaptation to a changing environment. Although the molecular mechanisms underlying the biological clock at a cell-autonomous level have been explored at length, most organisms from invertebrates to mammals rely on the coordinated action of different oscillators that are localized in neuronal clusters in the adult brain, and even in different tissues. How the different oscillators in the brain are coupled and synchronize peripheral oscillators to render a coherent output remains largely unexplored in both invertebrate and mammals. One of the long-term goals of our laboratory is to unravel the molecular and cellular basis underlying the control of rhythmic physiology and behavior, and how these properties change throughout life under normal or pathological circumstances, such as aging or neurodegeneration; we employ Drosophila as the model system.
Combining genetic tools together with behavioral analysis, molecular approaches, confocal microscopy, optogenetics and electrophysiology we examine how the circadian network operates to get to questions of the likes, how are molecular oscillations translated into behavioral rhythmicity? How is synchronization among circadian oscillators in the brain achieved? What is the relevance of the PDF neuropeptide on these events? How does the PDF circuit communicate with other oscillators within the brain? How does aging affect the operations of the circadian network?

Pírez N, Bernabei-Cornejo SG, Fernandez-Acosta M, Duhart JM, Ceriani MF. (2019). Contribution of non-circadian neurons to the temporal organization of locomotor activity. Biol Open. Jan 7;8(1). pii: bio039628. doi: 10.1242/bio.039628. Pubmed

Franco DL, Frenkel L, Ceriani MF. (2018). The Underlying Genetics of Drosophila Circadian Behaviors. Physiology (Bethesda). Jan 1;33(1):50-62. doi: 10.1152/physiol.00020.2017. Review. Pubmed

Frenkel, L., Muraro, N.I., Beltran Gonzalez, A.N., Marcora, M.S., Bernabo, G., Hermann-Luibl, C., Romero, J.I., Helfrich-Forster, C., Castano, E.M., Marino-Busjle, C., et al. (2017). Organization of Circadian Behavior Relies on Glycinergic Transmission. Cell reports 19, 72-85.

Herrero, A., Duhart, J.M., and Ceriani, M.F. (2017). Neuronal and Glial Clocks Underlying Structural Remodeling of Pacemaker Neurons in Drosophila. Frontiers in physiology 8, 918.

Beckwith EJ and Ceriani MF. 2015. Experimental assessment of the network properties of the Drosophila circadian clock. J Comp Neurol. 2015 Apr 15;523(6):982-96 Pubmed

Depetris-Chauvin A, Fernández-Gamba A, Gorostiza EA, Herrero A, Castaño EM, Ceriani MF. 2014. Mmp1 processing of the PDF neuropeptide regulates circadian structural plasticity of pacemaker neurons. PLoS Genet. 2014 Oct 30;10(10):e1004700. Pubmed

A. Gorostiza, A. Depetris-Chauvin, L. Frenkel, N. Pírez and M.F. Ceriani. 2014. Circadian pacemaker neurons change synaptic contacts across the day. Current Biology, 24:2161-2167. Pubmed

Beckwith EJ, Gorostiza EA, Berni J, Rezával C, Pérez-Santangelo A, Nadra AD and Ceriani MF. 2013. Circadian period integrates network information through activation of the BMP signaling pathway. PLOS Biol 11(12):e1001733. PubMed  

Muraro NI, Pírez N and Ceriani MF. 2013. The circadian system: plasticity at many levels. Neuroscience 5;247:280-93. PubMed

Gorostiza EA and Ceriani MF. 2013. Retrograde bone morphogenetic protein signaling shapes a key circuit pacemaker circuit. J NeuroSci 9;33(2):687-96. PubMed 

Zappia MP, Billi SC, Frasch AC, Ceriani MF and Brocco MA. 2012. A role for the membrane protein M6 in the Drosophila visual system. BMC Neuroscience, 13:78. PubMed

Beckwith EJ, Lelito KR, Hsu Y-W A, Medina BM, Shafer OT, Ceriani MF* and de la Iglesia HO*. 2011. Functional Conservation of Clock Output Signaling between Flies and Intertidal Crabs. Journal of Biological Rhythms, 26(6):518-29 PubMed

Depetris-Chauvin A, Berni J, Aranovich EJ, Muraro NI, Beckwith EJ and Ceriani MF. 2011. Adult-specific electrical silencing of pacemaker neurons uncouples the molecular oscillator from circadian outputs. Current Biology 21: 1783–1793. PubMed

Frenkel L and Ceriani MF. 2011. Circadian plasticity: from structure to behavior. International Review on Neurobiology. Vol 99: 107-138. PubMed

Zappia MP, Brocco MA, Billi SC, Frasch AC and Ceriani MF. 2011. M6 membrane protein plays an essential role in Drosophila oogenesis. PLoS ONE. 6(5):e19715. PubMed

Franco DL, Rezával C, Cáceres A, Schinder AF and Ceriani MF. 2010. ENA/VASP downregulation triggers cell death by impairing axonal maintenance in hippocampal neurons. Molecular and Cellular Neuroscience, 44(2):154-64. PubMed

Rezával C, Berni J, Gorostiza EA, Werbajh S, Fagilde MM, Fernández MP, Beckwith EJ, Aranovich E, Sabio y García C and Ceriani MF. 2008. A functional misexpression screen uncovers a role for enabled in progressive neurodegeneration. PLoS ONE 3(10):e3332. PubMed

Fernández MP, Berni J and Ceriani MF. 2008. Circadian remodeling of neuronal circuits involved in rhythmic behavior. PLOS Biology 6(3):e69. PubMed

Berni J, Beckwith EJ, Fernández MP and Ceriani MF. 2008. The Axon-Guidance roundabout Gene Alters the Pace of the Drosophila Circadian Clock. European Journal of Neuroscience, 27 (2): 396-407. PubMed

Rezával C, Werbajh S and Ceriani MF. 2007. GAL4 causes cell death in Drosophila. Eur. J Neurosci, 25 (3) 683. PubMed

Fernández MP, Chu J, Villella A, Atkinson A, Kay SA and Ceriani MF. 2007. Impaired neuronal function alters rhythmicity in the circadian circuitry. Proc. Natl. Acad. Sciences NY, 104 (13) 5650. PubMed

M. Fernanda Ceriani
Head of Laboratory -

Juan Ignacio Romero
Assistant investigator - CONICET

Anastasia Herrero
Post Doc - CONICET

Sofía Polcowñuk
Post Doc - CONICET

Giovanna Margarita Velázquez Campos
Ph.D. Student - CONICET

Juan Ignacio Ispizua
Ph.D. Student - CONICET